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Summary 

For the profile analysis of several multi- 
variate samples in a nonparametric framework with- 
out assuming normality, a certain appropriate 
hypothesis of parallelism of population profiles 
is formulated. A class of test criteria is 
obtained to test such an hypothesis. The overall 

X2- statistic arising from differences among popu- 
lations is partitioned into two components --the 
first due to the "interaction" between populations 
and variables, and the remainder due to the "pure 
main effects" from the populations. Some theo- 
retical properties of the criteria are established 
and, finally, simulation studies are carried out 
to investigate the performance of these criteria 
for small or moderate size samples. 

Introduction 

Let X. =(X 
j= 1,2,...,ní be independent random vectors from 

the i -th population with nonsingular continuous 
c.d.f. Assume that we have such independent 

samples from k populations for i =1,2,...,k with 
a total sample of size N = Eini on p variables. 

In the parametric framework it is usually assumed 
that the i -th population is p- variate normal with 

mean = 1),...,úíp)) and common nonsingular 

covariance matrix E. The hypothesis of 

homogeneity is then 

HO: =}1k, 

while the hypothesis of parallelism of population 
profiles is usually formulated as 

H1: pi1) 1j = i= 2,...,k. 

The formulation H1 arises naturally by 

considering population profiles obtained by 

plotting means against variable a =1,...,p 

for each i. 

Fig. 1: Population Profiles in terms of Means 
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The corresponding sample profiles are obtain- 
ed on replacing population means by sample means. 
The appropriate test criteria for HO and H1 

respectively are available in standard texts 
(see, e.g., [5]). 

It is desirable to construct suitable 
nonparametric analogs in order to discard the 
stringent assumption of p- variate normality, 
especially in situations where we can observe or- 
dinal data without precise numerical measurements 
X's. Nonparametric tests are already available 
in the statistical literature (see, e.g., [2], 

[6], [7]) for the homogeneity hypothesis 

H0: F2 = =Fk, 
which is the obvious analog of HO in the 
nonparametric case. In this paper suitable 
nonparametric analog of H1, viz. H1, is first 

formulated and, then, asymptotic chi -square 

criteria are offered to test H1. 

Preliminaries 

The nonparametric tests of HO presented 

independently by Bhapkar [2] and Suguira [7] 

are based on the technique of generalized U- 
statistics. Such tests were developed initially 
for the univariate case by Bhapkar ([1]). 

In the multivariate case the generalized U- 

statistic corresponding to a function 

of k arguments is defined by 

n nk 

k ia)(xlt (2) 

t1=1 tk 1 1 k 

j=1 j 

= 1,...,p and i 1,...,k. Let 

and 

U 

We assume that (a) 
is a specific rank function, 

say it, comparing the a -th components of the i -th 
argument against the other k -1. Thus, we assume 

(3) 

where ria)is the rank of x(a)among 

{xa), j =1,...,k }. In view of continuity assump- 

tion, with probability one there are no ties. 
Note that the functions considered by Bhapkar [2] 

and Suguira [7] are special cases of functions 

satisfying (3). 

Let F (Fl,...,Fk) and define 



n( where X 's 

represent independent random vectors with c.d.f. 
Fi's respectively. Then we have 

k k 

= = j] = 
j =1 j =1 ij 

here is the rank of among 

j= 1 ,...,k} and 

(4) 

v (F) = P[R(a) j], (5) 

with the probabilities computed under F. 
Suppressing F for the moment, let" 

= (nil) ,...,nip) = 

Note that under Hp, V. = 1/k for all a = 1,...,p, 

and i,j = 1,...,k, so that n(F) Oj, where j is 

a column- vector of appropriate order with all 
elements 1 and 

k 

E 

j=1 

(6) 

Now it is known that if ni + in such a way 

that ni /N + pi, where N = Eini, 0 < pi < 1, 

i= 1,...,k, then 

E(U) = n(F), V(Un) 0(N-3/2) 

and 

N1J2(Un - n(F)) '-_, T(F)), 

(7) 

for any F. Here the subscript n denotes the 

vector of sample sizes on which U is based, V 

denotes the covariance matrix ,4 denotes con- 

vergence in distribution,Jthe normal vector of 
appropriate dimensions. 

It was shown in [2] that under 

n(F) = T(F) = ®p(F), (8) 

where [a. B], and E is given by 

= 2 {qJ + k2A - kqj' - kjq'} (9) 

(k -1) 

with J = [1], diagonal (pil, i= 1,...,k), 

q = Eipil andq Also p is a 

matrix of correlation coefficients between 

and where X's 

and Y's are independent with common c.d.f. F 
except that Xi = Yi, and 

p = 
2 
(X (X )] -[E(ia))]2 (10) 
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where 

=E = x }. 

It can be shown that in view of condition (3) p 

does not depend on the common F under H0; however 

it does depend on the function O. Explicit 
values of p are given in [2] for some specific 
functions O. 

Also it has been shown in [2] that if, under 

H0, the common F is nonsingular (in the sense that 

the whole probability mass is not contained in any 
lower -dimensional space) then p(F) is nonsingular. 

Then the matrix p of consistent estimators is 

also nonsingular with probability approaching one 
as all 

It was shown in [2] that 

2 k 

T 
0 

N(k21) p (U1 U)p - ü), (11) 
=1 

where pi = n. /N and U = E.pU., has a limiting 
2 

X (p(k -1)) distribution under H0. Explicit 

statistics denoted by V,B,L and W were offered as 
possible nonparametric test criteria (for the 

hypothesis HO) corresponding to (i) l,if r =1, 

and 0 otherwise, (ii) GB(r) = 1, if r =k, and 0 

otherwise, (iii) = -1, = 1 and 

OL(r) = 0 otherwise, and (iv) OW(r) = r. 

Suguira [7] considered the class of functions 

(a) 
0-1)r (k 

(k -1)r (k -1)s' 

where j is the rank of among 

(12) 

(a) Z=1,...,0, and (a)r =a! /(a -r)!. In view 

of (3), this function can be expressed as a 
member of the class 

r,s 
r,s = 0,1,...,k -1} 

with denoting the right side of (12). 

The choices (i) (0,k -1), (ii) (k -1, 0), 

(iii) (k -1, k -1) and (iv) (1, 1) for (r, s), 

respectively, are essentially equivalent to 

4v' B' L 
and respectively. His statistic 

is essentially the same as (11) except that he 

uses somewhat different estimates for p. We may 

note here, however, that his estimates are 

consistent only under HO while those in [2] are 

valid for any F and hence the latter are to be 
preferred. 

Nonparametric Parallelism Hypothesis 

First we want to formulate an appropriate 
nonparametric analogue of the hypothesis H1 of 

parallelism of profiles. In the parametric case 
the profiles are defined in terms of population 
means as in Figure 1. In the more general non - 
parametric case we can similarly define the 



population profiles in terms of quantities 

which are the expected values of rank functions 

in (3). For each i, indicates the relative 

rank location (for the specific function used) 
of the i -th population among the k populations 
with respect to the component a. Plotting these 
for various would give the profile of the i -th 
population. 

Fig. 2: Population Profiles in terms of n's 
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The corresponding sample profiles can 
similarly be plotted in terms of statistics 

, a= 1,...,p for each i= 1,...,k. 
The obvious way to define the parallelism 

hypothesis is to require 

= n(2) = 
i 

for each i. However, we note from (4) that n's 
do depend on the specific function 4). It is not 
desirable to formulate the hypothesis itself 
oriented towards a particular function Rather 
we would prefer a formulation that works no matter 
which function is used. With this point in 
view, we now give the following definition: 
Definition. The populations F1, F2 , Fk are 

said to have parallel profiles if F (F1,...Fk) 

satisfies 

H1: (F) = = (F), = 1,...,k, 
(13) 

where is defined by (5). 

One might wonder whether H1 and H1 are 

equivalent in some sense under the normality 
assumption. The answer is no except possibly the 

special case where the variances of are 

the same for all a =1,...,p. We prove here only 
the weaker statement: 

Lemma. If X1,...,Xk are independentgui, E), 

respectively, and the diagonal elements of E are 

equal, then H1 implies H. 

Proof: Note that 

P[Ria) =j]=E P[Each of , k= 1,...,j -1} 

< 
X(a) 

< Each of 

m = j 
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= E P[Each of 

< Y. < Each of 

+ ) 
(14) 

here E denote the sum over (k -1) combinations of 
-1 

subscripts i2, k = 1,...,j -1 chosen out of k -1 
distinct subscripts it, =1,...,k (except j) 
(denoting integers 1,...,k except i). 

Now Yi(1) for a = 1,...,p and.i = 1,...,k 

are independent and identical normal variables. 
If the condition H1 is satisfied, we see from (14) 

that (F) does not depend on a and hence, 

then, H1 is satisfied. 

In fact normality as such is not used at all 
except for the fact that pi are location para- 

meters. By using essentially the same argument 
we have thus proved the 
Theorem 1. Suppose are independent with 

c.d.f. 

F.(x) = F(x -p.), i= 1,...,k (15) 

for some continuous F, and assume that the 

marginai c.d.f.'s F(a), a= 1,...,p, of F are 

identical, then the conditon H1 implies the 

* 
condition H1. 

* 
Test of H1 

In order to test H1 we now propose the 

statistic 

N(k-1)2 
k 

T1 
2 

E 

i=1 

= T - T (16) 

where T0 is the statistic (11) for H0, 

N(k 
p i(Ui 1Jp- 1(U -U), (17) 

i =1 

and y = 1 /j'p lj. T1 is to be regarded as a 

large -sample X2((p- 1)(k -1)) criterion for H1 

while T2 as a X2(k -1) criterion for testing 

H0, assuming H1, i.e., for testing the 'pure' 

differences among the populations after 
eliminating from TO the interaction contribution, 

if any. 

It may be noted here that if P is any (p -1)xp 

matrix of rank p -1 satisfying Pj = 0, then 

-1 -1 P 
-1 -1P. 

where p is a positive definite matrix and 

= 1 -1j. Since p is a non -singular corre- 

lation matrix, it is positive definite, and so 



is p with probability tending to 

Thus, we may also express Ti as 

2 k 
T1 = 

N(k 
2) 

P'(PpP') U).(18) 
1 =1 

It is straightforward to show that, if HO 

holds, x ((p- 1)(k -1)) and T2 X2 (k -1); 

this will also follow from Theorem 3 established 
in the next section. However, what we would 
like to have if possible is the stated limiting 

distribution of T1 under H1 alone. This does 

not seem to be possible by the present approach 
(and perhaps by any other approach) without 
discarding the relative simple form of the 
statistic. Note in (7) that in general the 
limiting covariance matrix T is a pk x pk 

matrix of functionals depending on F. It is only 

under HO that T had the structure E p, where 

is known, and now p is a pxp matrix of 

functionals depending on common F. Discarding 
the Kornecker product structure would make it 
necessary to estimate all terms of T, thus 

making the computation much more involved. 
However, as we shall show shortly, the use of 

concept of 'local alternatives' to still 

makes it possible to justify the use of statistic 
* 

T1 for testing H1. 

We now state here without proof a Theorem 
which establishes consistency of the T0, T1 and 

T2 tests for appropriate alternatives. The 

reader is referred to [3] for further details. 
Theorem 2. Let T0, T1 and T2 be defined as 

(11), (16) and (17) for functions 0(a) satisfying 

(3). If ni + in such a way that 

0 < pi < 1, then 

(i) TO iff F e {FIE is 

independent of i and a, 
i = 1,...,k, 

= 1,...,0, 

(ii) T1 iff F is 

independent of a 
= 1,...,p for each i 

= 1,...,k} 

and, if p -1 = [paß], then 

(iii) T2 iff F 

is independent of i }. 

Remark. We thus note here that the tests 

T1 designed for H0, H1 respectively are consist- 

ent only against alternatives to the hypotheses 
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'effectively' being tested viz. 
* k 
HOB: E )(F) is independent of i and a 

j =1 

and 
k 

H10: E 4(j)v( )(F) is independent of a, 

depending on the function used for T's. Of 
course this undesirable feature of nonparametric 
tests is usually unavoidable, e.g., Mann- Whitney 
test, Sign test, Kruskal- Wallis test all suffer 
from a similar disadvantage. 

Note also that if is accepted, i.e. 

is independent of a, then T2 unless 

E.q(j)vij(F) is independent of i which is precise- 

ly the condition for co assumin g H 1 
. 

Asymptotic Distributions 

In the previous Theorem we have found the 

class of fixed alternatives F (F1,...,Fk) for 

which the tests are consistent, i.e., for which 
the power of the respective test tends to 1 as 
n. We shall now find the limiting distri- 

butions of T0, T1 and T2 under the sequence of 

Pitman location alternatives 

HN: FiN(x) = F(x - N 1 /26i), i= 1,...,k (19) 

where the 's are not all equal, and O. 

Let 

Y(a)(F) = k F), = (Y(1),...,Y(P)), 
i i i i i 

1 

= (20) 

where 

q(a)(0,F) = (j)[(j_2)a(a)(j-2,k-j,F) 
j=1 

and 

a(a)(b,c,F) = 1 [F(a)(Y)]b [1- F(a)(Y)]c f(a) 

(y) dF(a)(Y) 

The result concerning limiting distribution 
is now stated here without proof. The reader is 

referred to [3] for further details. 

Theorem 3. Consider the sequence {HN} of distri- 

butions {FN} given by (9) and assume that F(a) is 

differentiable and has a bounded derivative f(a) 

almost everywhere, a = 1,...,p. Suppose further 

that there exist functions g(a) such that for 

sufficiently small h 

IF(a)(x +h) - F(a)(x) I g(a)(x) 
h 



for almost all x, and f g(a) (x)dF(a)(x) < m. - 
Then as ni so that ni/N + pi, < pi < 1, 

T0 X2(P(k-1), a04,6,F)), 

T1 X2 ((P-1)(k-1), 
1 
(0,6,F)) (21) 

X2 2 ((k-1), 

where 

a0(,a,F) 
(k-2)2 

i=1 

2 k 

Xl(,6,F) 
(k-) E 

í=1 

-YP - 

and 

= X0(c,6,F) - 

Now we are in a position to identify the 
sequences of distributions {FN} for which 

the criteria have limiting null distributions. 
Theorem 4. Assume conditions of Theorem 3 and 

suppose that q(a)(0,F) #0. Then 

(i) T0 
2 
(p(k -1)) iff H0 holds; 

furthermore, if F(a) = for all a 8, then 

(ii) T1 X2((p-1)(k -1)) iff 6i1) 

= 0)), 1,...,k 

and 

2 * 
(iii) (k -1) iff HO holds, assuming 

=6iß) for all a #ß. 

Remark. Note here that T1 has a limiting central 

X2- distribution under only with side 

conditions that the form of marginal distri- 
butions is the same for all components and the 
location parameters are in the same relative 
position for each component a for the i -th 
population. The latter condition is similar to 
the statement of H1 in the parametric case. 

However, here we require in addition the equality 
of all marginal distributions except for location 
parameters. This conditon is similar (in fact, 
equivalent) to the condition of 'commensurability' 
required in the parametric case (see [5]) for 

profile analysis to be meaningful. 
Finally, in this section, we present the 

form of q's for some 0- functions referred to in 
section 2: 

(i) = -a(a)(0,k-2,F) 

(ii) = = a(a)(k-2,0,F) 
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(iii) = a(a)(0,k-2,F) 

+a(a)(k-2,0,F) 

and 

(iv) = q(a)(0F) = f f(a)(y)dF(a)(y) 

Concluding Remarks 

We have thus established, first of all, 
consistency of the three tests T0, T1, and T2 

for 
a 

specific * function against alternatives to 

and H0 /H1 respectively in the 'direction' 

of the specific function used. Next we have 
obtained their asymptotic powers for local 
alternatives to and have established that if 

all marginals of F are identical and the location 

parameters N 
-1/2 a) 

are the same for all a, 

then T1 is asymptotically X2((p- 1)(k -1)). Note 

from Theorem 1 that H1 is satisfied in such a 

case. 
Computer programs for TO and T1 have been 

written for specific functions 0V, L and 
the multivariate version (see [7]) Kruskal- Wallis 
H- statistic. (It has been noted (see, e.g., 

[7]) that W- statistics (i.e., T's using 0W) have 

the same limiting properties as H.) Also 
simulation studies have been carried out to 

investigate X2 approximations under HO and powers 

under some alternatives to H0 (some satisfying 

H1) for three different distributions and several 

covariance structures. These studies are being 
presented in another paper [4] and these seem to 
indicate that, apart from the partial 
justification provided for the test T1 for the 

* 
hypothesis H1, there is also reasonable empirical 

justification to believe that indeed the concept 

of local alternatives to H0 in the direction of 

might indeed provide the way out of the 

theoretical hurdle encountered earlier. 
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